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Abstract: It is shown that in formulating a field theory with complex masses, keeping much 
closer to a detailed space-time description than existing treatments, one is naturally 
led to a modified Yang-Feldman equation. 

A consistent interpretation emerges, in which the complex masses are not associated 
with particles, but with a modification of the field propagation law, which becomes 
acausal. 

The indefinite metric of the usual treatments plays no role here. 
An investigation of both the case of interaction with an external potential, and of 

the fully quantized theory is carried out. 
No unitarity, or Lorentz invariance troubles arise, but in the case of a fully quantized 

theory, the contribution of virtual states with arbitrarily high energy, leads to an en- 
hancement of the basic acausality of the propagation law, in a way that may lead to 
macroscopic deviations from causality. 

1. I N T R O D U C T I O N  

Considerable interest  has been given recent ly [ 1 - 4 ]  to theories wi th  complex  

regulator masses. (For  an earlier related discussion see ref. [5].) Through a set o f  

modif ied  F e y n m a n  rules [1], supplemented  by specific integrat ion prescript ions 
[2, 3] a per turbat ive expansion o f  an unitary,  Lorentz  invariant and finite S-matr ix  

has been obtained.  
In those t reatments ,  field theory  plays basically only the role o f  an heuristic 

guide to the der ivat ion o f  the modif ied  F e y m a n  rules and the connec t ion  be tween  

the final S-matr ix  and a specific field theory,  wi th  given equat ions  o f  mot ion  re- 

mains unclear.  
In this paper we shall fol low a path  much  closer to usual field theoret ical  con- 

cepts, making only the minimal  modif ica t ions  necessary to consistent ly incorpora te  

complex  masses into the theory.  

* Preliminary results of this work were reported by one of us (J.A.S.) at the Symposium 
"Basic questions in elementary particle physics", Munich, June 1971, and PUC preprint 7-71. 
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To see the essentials of the problem we shall introduce complex masses in the 
simplest way i.e. through a higher order differential equation with masses m (real) 
and M, M*, 

(I-I + mZXffl + M2)(I-I + M .2) 
¢ (x) -- ] (x) ,  (l)  

[342 _ m212 

where J(x)  is an as yet unspecified source and the normalization factor IM 2 -m21-2 
is chosen so that formally the equation goes into a Klein-Gordon one for M--~o. 

It is of course possible to obtain (1) from a Lagrangian and associate to it a 
(pseudo) canonical formalism [6], but this will be of little use in our discussion. 

We shall employ in solving (1) the Yang-Feldman method [7] which convention- 
ally would lead to: 

~b(x) = ¢ i n ( x ) + I  GR ( x - y )  J ( y ) d  4 y ,  (2) 

with the retarded function given by 

1 d4ke-/kX[M 2 - m212 
G R ( x ) -  ( 2 - ,  ~CR (k2~_ ~ . . ~ S ~ M U .  ~-2 M.2)  , . . m _ ) U c ~ ) U  ¢ (3) 

and the retarded contour shown in fig. 1. 
In (2) ¢in corresponds to the solution of the free equation 

V M*2 _ m 2 . V M  2 m 2 
(4) 

where 

q~ (x) = 1 ~ dak {ain (k) e - ikx  * a +. (k) e/kx} 
(2zr)~ ~ , ( k  2 + m2)¼ m 

(5) 

= 1 1  1 d3k {Cin (k )  e -ikx + b + (k) e ikx} , 
e~ (x) (2~)~ x/~'(k 2 + M2)~ 

( x )  -- ( x ) )  + 

In (5) and (6) 

[ain (k) a. + (k')] = 5 (k - k') 

(6) 

(7) 
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[Cin (I,) b. + (k3] : [b~. (k )  c t (k')]  : ~ (k  - k ' )  
' I n  ~ i n  ' 

(8) 

all other commutators vanishing. These commutation relations, together with the 
interpretation o f  c(k), b(k), as annihilation operators, imply, of  course, an indefi- 
nite metric in the state space. 

One could try now to set up a perturbation theory based on (2). However, 
both the Green function and the incoming fields, have a time dependence that 
blows up exponentially, leading to meaningless integrals. 

This is an old story. It was the same difficulty that led Lee and Wick [1] to 
their modified Feynman rules for the S-matrix. Our insistence in working with 
the field operators rather than only with the S-matrix will lead us, however, to 
different rules from the Lee-Wick ones. 

In our opinion, a field theoretical framework, with a much more detailed 
space-time description than a pure S-matrix theory, is of  considerable interest in 
clarifying a number of  questions related to the introduction of  complex masses. 
In particular, the violation of  causality can be analysed in a direct way through 
the response of  the system to an external classical perturbation. 

In order to understand the troubles with eq. (2), as well as to have a clue to 
its necessary modifications, we start in sect. 2 with the particularly simple example 
of  interactions with an external classical potential, and proceed to a discussion of  
the fully quantized theory in sect. 3. 

2. EXTERNAL POTENTIAL 

We take here J(x) = V(x)  0 (x) in (1). In this case, it is clear that, as long as 
the potential has finite-duration, there are no convergence problems, and one can 
show the existence of  a pseudo-unitary S-matrix adapting the methods used in [8]. 
Physical positive definite unitarity is however, violated, due to transitions between 
real and complex energy states. In the Born approximation, for instance, one has, 
as usual, the transition amplitudes proportional to the Fourier transform of  the 
potential. Complex energy transfers are possible, since we have the Fourier trans- 
form of a function of  compact support in time, and therefore, an entire function 
of  the energy. As the support of  the potential in time, goes to infinity, those am- 
plitudes describing complex energy transfers become divergent.In second order, 
even the amplitudes for "physical", real mass processes diverge, due to the contri- 
bution of  intermediate states with complex energy. This divergence of  "physical" 
amplitudes, should come as no surprise, considering that we have a pseudo-unitary 
theory, where cancellation between infinite positive and negative "probabilities" 
c a n  o c c u r .  

It is also clear, that the naive argument of  energy conservation, which for a 
static potential, would exclude transitions between real and complex energies, is 
incorrect. 
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In order to be able to have a meaningful theory based on eq. (1), it is un- 
avoidable that we will have to modify (2) in such a way that no exponential  
blow-up in time occurs. It will turn out that in doing so, we will automatically 
enforce physical unitari ty and obtain an unambiguous set of modified Feynman 
rules, different from the Lee-Wick [1] ones. 

First,  it is clear that, to avoid the exponential  increase of  the Green function 
it is necessary to introduce a new integration contour (along the real axis), so 
that 

1 f d4ke-ikXlM2 - m2j 2 
GRrn (x) (9) 

(21r) 4 J (k 2 mZ)(k 2 M2)(k 2 M .2 )  
CRm -- _ _ 

with the modified contour CRm given by fig. 1. 

+_V/k  = + M *= 

÷ 
J 

CFm _kvrk_-'~'++m 2 

Im k o 

Cm 

÷ 

V/k_=+ M = 

f 

CRm 

k = ~ ~ +  m = Re k .  

+ k_q~2--~+ M" = 

Fig. 1. The contours CR, CRm and CFm for the Green function. 
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The new Green function GRIn is no longer strictly retarded since the poles in 
the upper half plane will introduce a certain amount of  acausality of  the order of 
1 / ImM [91. 

That an acausality should appear in a theory with complex masses, would be 
expected in any case [1], and it is advantageous to have it explicit as early as pos- 
sible. It should be stressed that this acausality is of  a "primitive kind" [10], but 
will reflect itself in a violation of  the relativistic Einstein causality (local commu- 
tativity). 

Besides modifying one's Green function, one has also to eliminate the expo- 
nential growth from the incoming fields (4) themselves, and this will be simply 
done by taking as incoming configuration, just the field ~m m (x). Physically this is 
very reasonable since we do not want the complex mass "particles" to have any 
asymptotic manifestation. 

We arrive thus, at a modified Yang-Feldman equation 

x I GRIn (x ~b (x) = ~m ( m ) +  - y )  J ( y )  d 4 y  (I0)  

with JC v) = vcv) 6 (v) for the case under consideration here. The solution of  the 
integral eq. (10) is of  course again a solution of  the basic differential eq. (1) cor- 
responding however to different boundary conditions. 

It is clear that, since GRm is damped exponentially for x o -Yo < 0 we have 

q~ (x) = ~b~n (x) (1 1) 

X ---~__oo X ----~__oo 
O o 

in the sense of  L.S.Z. [11] and 

6 °ut (x) = 0 (12) ~b (X) = 6  °ut (X) (F'I + m 2)_m 
- m  ' 

Xo-'~'~ X o ~  

since only the oscillating part of  GRIn corresponding to the real mass rn will sur- 
vive for Xo-+~. 

It can be readily seen that the perturbation theory based on (10) is now free 
of divergences to every order in perturbation theory, even for static potentials. 

We shall now verify that this theory leads to an unitary S matrix in every 
order. Writing the expansion of  ( I0)  

dp (x) = O~ (x) + I GRIn (x -- y) V (p) ~ (y) d4y + . . .  (13a) 

Symbolically as 

1 in (13b) 
dp- 1 -- GRmV dPm 
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we have 

_ I A 1 

[ ~ b ( x ) , ~  Cv)] 1 GRmV i 1 - VGAr n 
(14) 

with 

GAin (x) = GRm ( - x )  , 

A (x - y )  = i [q~n ( x ) ,  ~b~n (Y)I 

Using (16) one can write (14) as 

l 1 
[~b (X) , ~b CV)] - i 1 -- GRm V 

leading to 

(15) 

=GRIn ( x - - y ) - -  CAm (X -- y ) ,  (16) 

1 l 1 

V V 1--  VGAm' 
(17) 

[~b (x) ~b (v)] = [~b~n (x) ~b~n (.v)] + 1 (GRrnVGR m + , , ~ GRm VGRm VGRm 

+ • - . - -  GAmVGAm -GAmVGAmVGAm - • . . )  , (18) 

with a clear symbolic meaning. 
If GRIn were a normal retarded propagator,  eq. (18) would imply local com- 

mutativity for ~b, and for Xo, Yo larger than the time the potential is switched 
off, 

[~b (x) , t~ (y)] = -[~b°Utm (x) ' -m d)°ut (Y)] = [~b~n (x) , q~n (Y)] . (19) 

Xo ' Yo > T 

In our case, since GRIn(x) is not zero, but exponentially damped for x o < 0, 
eq. (19) is not true. However, we will still have, that all contributions to the 
right hand side of  eq. (18), except the first one, vanish exponentially in the 
limit of  large times, and therefore, to every order of  perturbation theory, 

[q~ ( x ) ,  q~ (.Y)I = [qbt0n ut (x) , rmtb°ut (Y)I = [~birn n (x) , ~b~n (Y)I , (20) 

again to be understood in the L.S.Z. sense. 
The last equality of  (20) ensures the unitarity of  the S-matrix, provided an 

out vacuum can be found, implying a restriction on the spatial range of  the po- 
tential, (to avoid catastrophic pair creation) just as in the real mass case [8]. 

From (13) and (12) one easily obtains the "ou t  field" in terms of  the "in 
field", and computes scattering amplitudes, 
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with 

.(k'outlkin) = <Oout/Oin) (~(k '  - k) 
g(k' - k) 

(2n) 32 ~ '  

i V (k' - k")lM 2 - m2l 2 V'(k" - k) 
+ ~ ~ d 4 k  " - - + . -  

(2rr)72 (k "2 _ m 2 + ie)(k "2 - M2)(k "2 _ M .2)  

(21) 

~o(k)-- v ~ +  m 2 , 

1 I P'(k) e - ~ d 4 k  v (x) - (2~) 4 

and the Feynman prescription ie applied only to the real mass (contour CFm in 
fig. 1). 

One has therefore, obtained a set of modified "Feynman rules" for a unitary 
theory with complex masses, in the case of interaction with an external potential. 
For the sake of illustration we present an explicit computation of the amplitudes 
and a direct check of unitarity up to 2nd order perturbation theory in appendix 
A. 

With the additional technical assumption that the potential has compact sup- 
port in time and is a bounded function, it is possible to prove unitarity of the 
theory based on eq. (10), independent of perturbation theory (or rather showing 
its convergence), using methods closely related to the ones employed in ref. [8]. 
Since the proof clarifies the interplay between unitarity and non-causality it will 
be presented, in appendix B. 

It is appropriate to end this section be remarking that there is no canonical 
formalism underlying our modified Yang-Feldman eq. (I0).  This becomes clear by 
noticing that, for time-dependent potentials, the equal time commutation relations 
depend explicitly on time through the potential. In this case, the field algebras 
at different times are not equivalent, but for potentials that are slowly varying 
within the acausal interval, one can still speak of an approximate equivalence. In 
the static limit, one has, a posteriori, due to the time invariance of the Wightman 
functions, a time translation generator. In the general case however, energy has 
only an asymptotic meaning, being defined only for the incoming and outgoing 
states. 

In a certain sense, the theory thus developed, is intermediate between a pure 
S-matrix and a local quantum theory, since meaningful observations will have to 
be done in space-time regions large compared to the critical acausal length l/ImM. 

It should also be stressed that our procedure requires complex masses. Real 
masses will lead to a much more violent acausality, falling off as power, and also 
to unitarity troubles. 

The modifications leading to our eq. (10) amount to having the complex mas- 
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ses only as a parametrization of an acausal propagation law for physical particles. 
Since, in the present treatment,  the complex masses have no particle manifestation 
whatsoever, the indefinite metric of  the usual complex mass theories [1 -5 ,  12], 
plays no role here. 

3. FULLY QUANTIZED THEORY 

We shall proceed now to a discussion of  the fully quantized theory, taking for 
the sake of  illustration the simplest case J (x) = ~k • ~b 2 (x) • . 

([7 + m 2 ) ( D  + M 2 ) ( V I + M  .2) 0 (x) X : 42 (x) +Sin 2 (VI+M2)(D + M  .2 )  
Im 2 _ m212 12142 - m2L 2 

(22) 
where the (finite) mass renormalization counter-term has been explicity intro- 
duced. 

We shall solve (22) by iterations of  the modified Yang-Feldman equation (10). 
Up to 2nd order, performing the Wick-contraction, we obtain, 

0 (x) : O~m (x) + XfGRm (x - y )  O~ 2 (y)" d4y 

+ 2 X2fGR,,, (x  - y )  GRm(Y -- z) " 0~n 2 (7,) ~b~n (y)"  d4yd4z (23) 

+ f Gam (x - y) d 4 y [ 2  ~k 2 

XfGRma (y - -z)  A 1 @ - z ) d 4 z  ~h~(z)+ 8 m 2 0 ~  @)1 

+ higher order + . . . 

with 
a I (v - z) : i I ~ ~y) ,  ~ (z)l + .  

From (23), the mass renormalization is given to second order by 

~5 m 2 = F (m 2) , 

with 

(24) 

(2s) 

2 ~k2 f d 4 k 6  (k 2 - m2)lM 2 - m212 (p2) F I 

(2 77") 3 J { ( p  - k) 2 - m 2} {(p - k) 2 - M 2} {(p - k ) 2 - M  .2} 

(25) 
Since the self-energy integral (25), will, in higher orders, also contribute to the 

radiative corrections to scattering, and is the relevant quantity for calculating the 
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response of  the field to an external perturbation, we are interested in its behaviour 
for arbitrary p2. The asymetry between the contraction function and the Green's 
function, comes from our requirement that the complex masses should have no 
asymptotic manifestations, and will play an important role in the analytic structure 
of F(p2) .  It will lead, on one hand, to unitarity, (no pair of  complex conjugate 
particles exists in our approach), and, on the other hand, to a much more serious 
acausality than in potential scattering. 

It is readily seen that, after performing an integration on a time-like direction, 
(25) (25) becomes an absolutely convergent integral in the remaining variables 
provided 0 < p2 < 4 m 2. Furthermore, the result of  this integration is independent 
of the particular time-like direction one started with, assuring thus, the Lorentz in- 
variance of  the integral for that range o f p  2. For p2 ~> 4 m  2 one employs the usual 
retarded prescription Po ~ Po + i e leading also to an unambiguous Lorentz invar- 
iant result. 

For _p2 < p2 < 0 the integral (25) diverges. One can, however, define a finite 
self-energy for all values of  p2, by a procedure of  analytic continuation, corres- 
ponding to what appears as a natural definition of  the still singular product 
GRIn(x) AI(x), whose Fourier transform is F (p  2) (cf. appendix C). In practice, 
our procedure amounts to calculate the integral in the center of mass frame, and 
at the end, substitute p for Po keeping the usual retarded prescription. 

We thus obtain for F (p2 ) ,  the following integral representation, which suffices 
for a discussion of its analytic structure, 

F ( p 2 ) = - - X 2  I /~/  Cif= P(s 'm'mi)ds  3 p 2  + E  c i f  (mi-m)2p(s'm'mi)dsp2 

8rr 2 ~= (m+mi)2 s i=2 e~o s 

2 IM 2-m212 M 2 - m  2 ] 
p2 M 2 _ M . 2  log ~ 2 - - m 2  

(26) 

with 

m I = m, m 2 = M, m 3 = M* , 

M*2 _ rn 2 
= - * (27) C 1 1 , C 2 M 2 - M  .2 , C 3 = C 2 , 

s - (m + mi)2)(s - (m - mi) 2) 

p (s, m, mi) = s 2 

The analytic structure given by (26) is as follows: F ( p  2) is analytic in the p2 
complex plane, with cuts running from 4 m 2 to ~ (unitarity cut), (m + M) 2 to ~,  
(rn + M*) 2 t o ~ ,  (M - m) 2 to 0 to (M* - m) 2 and having a pole and a branch 
point at the origin (Cf. fig. 2). 
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Im p~ 

(m + M) 2 

t in+M*) ~ 

Fig. 2. The cut p2 plane for the self-energy. 

The first three cuts correspond to the ones obtained using the Lee-Wick rules. 
They are associated intuitively, to "intermediate" states formed of  (m, m ) ,  (m, M) 
and (m, M*) pairs. There is however no cut corresponding to an (M, M*) pair, 
which can be the source of  unitarity or Lorentz invariance troubles, and will, if 
properly treated, lead to a non-analytic singularity [2 - 4]. 

The extra cut going through the origin, is a new feature coming from the already 
mentioned asymmetry of  our self-energy integral (25), which leads, to an equal 
footing treatment of  the positive and negative energy roots of  the complex masses. 

This is quite reasonable, since it is through a particle interpretation, which we 
do not have the complex masses, that the positive root gets singled out. 

The pole at the origin, should not  be interpreted as indicating a zero mass 
bound state, or long range forces, since it really corresponds to a zero of  the fully 
corrected propagator 

, 2 I M2 -- m212 

G Rm(P ) = (p2 _ m2o)(p2 _ M2)(p2 _ M.2) F(p2)[M 2 - m2l 2 + 0 (~k 4) 

2 = m 2 6 m 2 
m 0 - -  . 

(28) 
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From the point of view of the acausal behaviour of the theory, the branch 
point at the origin is the most important singularity, and is given by (26) as 

_ m 2 (M 2 + m  2)_  q ~2 
F M*2 log ip 2 + c.c (29) 

F ( p  2 ) -  (pole)~  LM~---M~ ( M 2 2 m  2) "J 87r2 p2 ~ 0  

The connection between the analytic structure of F(p  2) and causality problems 
[ 13 ], becomes particularly clear in our formulation, since (28), is essentially the 
linear response function to an external perturbation, i.e., the field induced by an 
external classical source, Jc(x) is, in lowest order in Je(x), 

- G' ( ~ (X))in d 1 f Rm(p2)~c(P)e- ipxd4p (30) 
(2/1") 4 

with 

"J'c (p) = f Jc (x) e ipx d 4 x . (31 ) 

One can write (28) in the form of a modified Kallen-Lehmann representation 

GRIn( p ,  2) ~ o (s) ds (32) 
=a p2 _ s 

with s in (32) running over the cuts of fig. 2 and o having 6 singularities corres- 
ponding to the poles of (28). Considering only the dominating acausal behaviour 
of (30) which is controlled by the logarithmic singularity at the origin (29), one 
has with M 2 = [/142 [ e iO , [11421>> m, 

• ie s2ds J~-P-c ( ) 1 sin Oe -'° fd4pe_ipx f d - s  + c.c. 
(~b(x)}ind(aeausal) 16 n27~ 2 i021M212 o 

(33) 
where the cut in the neighbourhood of the origin has been deformed to lie on the 
imaginary axis. 

Using the asymptotic expansion, 

1 e -ipx X~.~(i~)~ e (i~)~(x2)~ 
(2 n)4fp2'i6 d4p -> -- 8(n)i (xZ)¼ 

(34) 

> 0 ,  Xo~_Oo ,  x 2 > 0 ,  

we get the following estimate for Jc(x) finitely extended in space-time, 
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(~b (x)>in d 

X -+--~ 
o 

x 2 > o  

P ( ~ ) s i n O  cos (O +¼rr )Yc(O)  
--' (3s)  

(x2) 4 ~21M212 0 2 

4. CONCLUSIONS 

From the preceding sections it is seen that, although the theory is quite satis- 
factory in the case of interaction with an external potential, being unitary, and 
having an exponentially damped acausal behaviour, for the fully quantized theory 
the situation leaves much to be desired. Although no unitarity troubles appear to 
the order considered, and one can expect, due to the absence of complex conju- 
gate pairs, that unitarity will be satisfied to all orders, the acausality is no longer 
exponentially damped but falls off  as a power (35). 

The reason for this "acausality enhancement" in a fully quantized theory is 
quite clear: In a relativistic theory the basic acausality of  the Green's function 
GRm is characterized by an invariant interval (x 2 - 2 * x )2 ~ 1/ImM. The larger 
the energy of  an process, the closer one is to the light cone, and the larger the 
effective acausality in time. In a potential theory, (as in sect. 2) the high-energy 
processes are automatically cut-off, so the acausality stays always under control. 
In a fully quantized theory, on the other hand, the existence of virtual processes 
with arbitrarily high-energy, as for instance those contributing to the self-energy 
integral, reduce the exponential acausality damping to a mere power one. 

Such slowly decreasing acausal tails, seem to us a serious shortcoming of the 
theory, even though one can play with the angle 0, to increase their leading 
power, and with the large mass M, to make them arbitrarily small. 

Besides their serious influence on the acausality, the singularities near the 
origin of F ( p 2 ) ,  have the effect, that even for very large regulator masses, the 
low energy behaviour of the theory will be quite different from the usual renor- 
malized theory with no regulators. 

These defects lead us to view with some pessimism the physical usefulness of 
field theories (and by this we mean theories with a given equation of motion and 
a detailed space-time description) with complex masses, (See however [4] .) 

On the other hand, it is always possible, to follow the Lee-Wick point of  view, 
and look only at the S-matrix, defined by their modified Feynman rules. If  this 
is done, causality problems have to be discussed in an indirect way, through the 
behaviour of  phase shifts near resonance, and deviations from it appear only for 
high energy processes [1]. The low energy behaviour of their theory will, for 
large regulator masses, essentially coincide with the usual one. 

The price to pay for this is, that besides losing the direct connection with a 
simple equation of  motion, one loses the space-time description and the possibility 
of  [ocal measurements. And it is, perhaps appropriate to stress, that only in terms 
of a given equation of motion,  that the problem of computing mass shifts due to 
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radiative corrections, (which provided one of the main motivations of the Lee-Wick 
theory), can be given an unambiguous meaning. 

APPENDIX A 

In this appendix, we shall illustrate the calculation of the scattering amplitudes, 
and the direct verification of unitarity, for the interaction with an external poten- 
tial, starting from the perturbative solution of the modified Yang-Feldman eq.(lO). 
This will be done explicitly up to second order perturbation theory, and can be 
easily generalized to arbitrary order. 

From the iterative solution of (10) one obtains 

, (x)  = ¢lO(x) + faR . ,  (x z)¢in(z)d4y d4z , (A.1) 

where the kernel K is given by, 

K(y, z) = V(y)6  4 (y - z)+ V(y) GRm(Y - z ) V ( z )  (A.2) 

+ V(y) fd4y'GRm (y - y') V(y')GRm(y' - z) V(z) + . . .  

Using the asymptotic condition (12), and remarking that asymptotically only the 
real pole of the propagator GRm gives a non-vanishing contribution, one has 

¢oUt(x ) = q~in (x) + f A  (x -- y) K (y, z) ¢in(z)d4yd4z (A.3) 

with A given by (16). 
From (A.3) one gets the connection between the incoming and outgoing creation 

and anihilation operators 

a°Ut(k)=ain(k)+ fO(COk,k, cok,k')ain(k')d3k' __ --~Ok,--k ' (k ' )d 3,k 

with (A.4) 
co k = x / ~  + rn 2 

and 0 (k, k') given to 2nd order by 

O(k,k')= - i _ _  {~(k, k )+fd4k , , f f (k ,  k,,~'~, Rm ('k'''V'k'') ( - k ) + . . . }  
2(2 rr)3X/~ok'o [ 

(A.5) 
with 

and 

V(x) =f  V(k) e-ikx d 4 k , 

~Rm(k) _ 1 ]M 2 - m212 
(2rr) 4 (k 2 - m 2 ) R ( k 2 - M 2 ) ( k  2 M .2) 

(A.6) 

(A.7) 
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From (A. 4,5) the scattering amplitude up to 2nd order perturbation is 

i "V(k' - k) 
(k 'outlkin) = (Ooutla°Ut(k')a+in(k)lOin) = 6 (k' - k) (0outl0in) - 

2(2 n)3X/COk,6O k 

i I f  d3 k" "V(k' + k) (Ooutla+in(k,,)a+in(k)[Oin) 
(21r) 3 X/2co k, X / ~ k , ,  

i_ 1 f "V(k' - k")GRm (k" )V(k" -  k)d4k" + higher order + 
2(2 rr) 3 N/-~OkCOk~, "" 

(A.8) 
The vacuum amplitudes can be obtained from 

a°Ut(k)10out) = 0 (A.9) 

which leads to 

d3kd3k ' 
10out) = (1 1 f I V ( ( k  + k'))12)10in) 

8(27r) 6 G,)k (D k , 

i f g ( k + = k ' )  a+in(k)a+in(k,)d3kd3k,[Oin ) 
4(2rr) 3 X/~kCOk, 

+ higher o r d e r . . .  (A. l 0) 

The amplitude (Ooutla+in(k")a+in(k)lOin) appearing in (A.8) can now be taken 
from (A.10)leading to 

(k'outhkin) = (0outi0in) {h (k' - k) - i (V(k '  - k) 
2(27r)3N/C~k COk , 

+ i _ f d 3 k  " "V(k' k" )V( -k"  k ) + f d 4 k " ~ ( k ' - k )  R m ( k ) V ( k - k )  
(2703 2COk" 

+ higher orders + . . . )} (A.1 l) 

The last two terms of  (A. 11) can be combined by changing the retarded pres- 
cription into a Feynman-like one, giving us eq. (22), 

(k 'outlkin)=(OoutlOin){ 8 ( k ' - k ) -  i ( ~ ( k ' - k )  + 
?(27r)3 N/~kCOk , 
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with 

+ f  d4k '' V(k' - k'%G', Fm'tk%" V,tk" - k) + higher orders + . .  . )} (A. 12) 

_[/1,/2 _ m2l 2 

G"Fm (k) = {k 2 - m 2 + ie} {k 2 - M  2} {k 2 - M  .2} (21r) 4 

One can also compute the production amplitude 

(klk2k3outlkin) i ~ 5 (k - ki) = V ( ~  + kl) + higher orders + . . .  (A.I 3) 
i = 1,2,3 X//31.4Wkl.COkl 
~/¢l 

and with (A. 12), (A. 13)directly check unitarity up to second order. The two con- 
tributions coming from the imaginary part of the second order term of (A.I 2), 
correspond to intermediate states with one resp. three particles, given by the first 
order terms of (A. 12) resp. (A. 13). 

Up to second order, the imaginary part of the amplitude (A. 12), does not depend 
on the complex masses, being equal to the one given by a normal theory with a Klein- 
Gordon equation. 

The real part, however, depends on the complex masses corresponding to an 
analytic structure, different from the one obtained in normal potential theory. In 
higher orders, also the imaginary part, will of course, depend on the complex masses. 

APPENDIX B 

We show here, that eq. (I0), leads in the case of an external bounded potential 
of compact support in time, to an unitary theory. 

It is convenient to introduce auxiliary fields 

= (I3 - M2)(E] - M .2) 
Ore(x) (~2  - m~M~-~ ~ m  2) q5 (x) ,  

I/M 2 M .2 (._~O~m2)(_ U]zM*2 ~ )  
CM(X) = I / ~ 2 - ~  m-~ (M 2 - m2)(M 2 _M*2)  ¢ (x ) '  

(B . I )  

(B.2) 

~M.(x) = ( , / ,g (X ) ) * ,  (B.3) 

so that 

(B.4) 



220 G,C. Marques, J.A. Swieca, A causal propagation 

Introducing further 

°~rni(X) = ~ 2  {N/4/-A+m20mi(X) + i 

- -  i 
(3mi(X) : {x,4/~-X+m~ Crni(x ) x~_A+m~ 

_ _  ~;mi(~)} ,  

- -  ~rni(X )}, 

(B.5) 

(B.6) 

with m i = m, M, M *  and 
a m (x) 

~m(X) 

aM(x)  
~ (x )  : 

~M(x) 

OlM*(X ) 

one can rewrite eq. (1) in the form of a six dimensional wave equation 

"OqJ-HoqJ z ~  - + v(x) ~ , 

with 

(B.7) 

(B.8)  

H = 
O 

~ 2  0 0 0 0 0 

o ~ 0 0 0 0 

o o , , / - X m ~  o o o 

0 0 0 ~ - A + M  2 0 

0 0 0 0 

0 0 0 0 0 

(B.9) 
and v(x)  a bounded matrix operator whose matrix elements are proportional to 

1 

and vanishing for [t[>T. 
From eq. (10) it is clear that the state space of our theory is the Fock-Space of in- 
coming particles with mass m. We therefore expand 
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~(X) = I 3 fd3k~n(k)  X~(X) +a +in (k)Xk(X) 
(21rF 

with X +, X- c-number solutions of eqs. (B.8). 
The boundary condition (11) requires that for times t < - T  

° 
e +ik ..x 

+x ?1 o xk( ) :  , ×~(x):  x3 (x) 
0 
o 

, ,x6(x) ) 

(B.IO) 

(B.11) 

where k = ~ and X ~ ~ indicates an as yet indetermined solution of the free 
u 3 ~  v 

equation. Those solutions will be determined by requiring the assymptotic condition 
(12) to hold. 

Assuming for a moment the existence of the classical evolution operator asso- 
ciated with the eq. (B.8) between - T  and T we obtain 

+ x  Xk(, , T ) :  UX~(x, - T) , ×~ (x,T)  = U×~ (x, - r )  . (B.12) 

Trough the imposition of the asymptotic condition (12), 

U33X;(X) + U36X~(X) = -U31 (e-ikx) , 

U63 X~ (X ) + U66 X~ (X ) = -U61 (e-ikx ) , 

(B.13) 

~ +ikx 
Ug3X3 (X) + U33X6 (X) = -Ug2(e 1, 

U63X3 (X) + U66X6 (X) = -U62(e+ikx) . 
(B.14) 

Eqs. (B. 13, 14) can be inverted, at least for sufficiently weak potentials, giving 
thus a complete determination of X -+ (x) for t< -T .  It is clear that the acausal features 
of the theory are introduced precisely through eqs. (B.13, 14)which adjust the 
initial conditions depending on the future values of the potential. 

To show the existence of the time evolution operator is suffices to prove that 
Dyson's expansion is convergent in norm. 

This is the case since: 
(a) Introducing in the usual fashion the norm of an operator as 

IIA II = max (xA '+Ax) (B.15) 
(x, x) ' 
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with 

(x,x) =fd3x 6 X/* (x) Xi(X ) 
i=1 

the operator 

Hint(t ) = e ittt° o( t) e -itHo 

(B.16) 

(B.17) 

is bounded in norm as long as V(x) is a bounded function. 
(b) The time evolution operator 

T 
U = e-iHo2TT exp--i f Hint(t')dt' (B.18) 

-T 
exists and is defined by Dyson's expansion. 

Furthermore, it is easily seen that U is pseudo-unitary with respect to an indefinite 
metric given by 

/ 1 0 0 0 0 0  / 
0 - 1 0 0 0 0  
0 0 0 0 1 0  

~ = 0 0 0 0 0 - 1  
0 0 1 0 0 0  

\ 0 0 0 - 1 0 0  

(B.19) 

With (B. 10, 12) one can relate the outgoing operators, 

~out (X)  = 

where 

f d 3 k {a out (I,) ~ (x) + a +out (k)~; (x)} 
(2rr)~ 

(eii x) l 
eO, x  

(B.20) 

(B.21) 

to the incoming ones, through 

a °ut (k) =fd  3 k' ( ~ ,  r/Ux~, )a in (k') + (~f¢, ~/UX;, ) a *in (k') 

where ~: is given by (B.21) with t=Tand X ± k given by (B. 11) with t=-T. 

(B.22) 
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The pseudo-unitarity of U together with (B. 11, 13, 14) ensures that the outgoing 
operators satisfy the correct commutation relations 

[a°Ut(k'), a+°Ut (k)] = 8 (k - k ' ) .  (B.23) 

Provided an out-vacuum can be found in the state-space of incoming particles, 
which requires a limitation on the range of the potential, to avoid catastrophic pair 
creation [8], (B.23) leads to the existence of an unitary S-matrix such that 

aOUt (k )=S- la in (k )S  ; [0out) =S-110in). (B.24) 

APPENDIX C 

We shall analyse here in greater detail, the self-energy integral (25). 
With 

P = (Po 0 0P l )  

introducing cylindrical coordinates 

k 1 k 3 -X/-2 ky = l - k x + k 0 , , 

we obtain 

with 

k 
0 = arctg ~Z,  

X 

)2  

0 

Ci[I  1 (p, rn(l), m i ( l ) )  +12 (p, m ( l ) ,  m i ( l ) )  ] (C.1) 

I 1 (p, m( l ) ,  m i ( l ) )  = f ~  dkl[  1 
[_ x/k21 + rn z ( l )  V ~ P ; - k l ) 2  + m~(l)  

× 
p2 _ (x/k] + rn(l) 2 + X/~a - k ,  )2 + m~ 0)2) 2 

(c.2) 

I2(P, m (l),  m i ( l ) ) = f  ~ dk 1 F - .  1 
Lx/K 21 + m2 (l)  

' ] 

2 ( v ~ ,  * m q )  ~ ~ - ~,)~ + m ~ q ) : ) :  
P O  - -  

(c.3) 
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where 

mi(l ) : 

and mi, C i introduced in (27). 
A detailed analysis of  the contributions from the I 1 terms has been given by 

Sudarshan et al. [3] and will not  be reproduced here. As a result of  their investiga- 
tion one is immediately led to the first three integrals of  eq. (26). 

We shall concentrate on the 12 contributions which will lead to the two remaining 
integrals of  (26) corresponding to the extra-cut going through the origin of  fig. 2. 

It will become clear in what follows that I2(P, m (l), m(l)) = 0 so we will have 
to consider only the last two terms of  (C. 1). 

Introducing the variable s, 

s = ( X / ~ l + m 2 ( l ) - - X / ~  kl)2 +mi~l))2 pl2 =(qU +q )(qu+q;a) (C.4) 

with 

qU = (N/%l 2 + m Z ( l ) , k l )  ' 

q'U= (-~/(Pl - kl ) z + mi(l) 2 , (Pl - k l ) ) '  
(c.5) 

and recalling that 

ds In/k 1 1 e quqv 
dk I 2 (C.6) - -  = 2 ? l  # P  t 

I + m ~ q )  v ~  - ~,)~ + mi(O_l 

we are led to 

I2( p. m(l), mi(l)) = 2f ds 

x/{s - (m(l) - rni(l)) 2} { s - (re(l) + mi(l)) 2} (p2 _ s) 

(c.7) 
where the integration contour, depicted in fig. 3 for mi= M, has the following prop- 
erties: Although Pl  dependent, it never cuts the positive real axis, goes always 
through the origin, cutting the negative real axis for s < - p ] ,  and encircles the branch 
point (re(l) - mi(l))2 and the respective cut of  the square root function. 

From the above it is clear that f o r p 2 >  0 the contour can be deformed so that 

4 f ( m  ( l ) -  m i(I )) 2 ds 
I2(P, m(l), mi(l) ) = o ~ - m f l ) )  2 } {s- (m(l )+ mi(l))2} (p2 _ s) 

(c.8) 
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/ 
/ 

Im pZ 

/// 
~ t  of V'~ 

Re pl 

Fig. 3. The Pl dependent integration contour for I2( p, re(l), M(l)). 

and inserting (C.8) into (C. 1) one reproduces the representation of eq. (26). (In 
particular for m i = m one has 12 = m one has 12 = O as anticipated.) Although se- 
parately, each one of the last two integral in (C. 1) would diverge at the upper end, 
their sum leads to a finite result. Careful treament of  the upper limits gives rise to 
the pole of  eq. (26). 

For _p2 < p 2  < 0, in deforming the integration contour of (C.7), as in (C.8), 
one picks up an extra contribution, since now for all l, p2 is inside the contour, 

+--87ri 
12 (p, m(1), mi( l ) )  = 

~/{p2 _ (re(l) - mi(l))Z } { pZ _ (m( l ) )  + mi( l ) )2}  
+ R  

with R given by (C.8). 
Inserting now (C.9) into (C. 1) one gets from the extra terms a contribution that 

for large l behaves as 

t"  oo 3 
J ld l  ~ C i l  2 (p, m ( 1 ) , m i ( l ) ) ~  + M 2 -  87ri e j= dl .  (c.10) 

(M .2 2m 2) 

i= 2 (M .2 _ M 2) X/_p  z - 

In this case there is no cancellation of divergent integrals and one is left with an 
infinite result. 

This divergence is a manifestation of the still singular nature of  the product 
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Im p2 

Re p2 

Fig. 4. The self-energy is defined everywhere by analytic continuation into the hatched region. 

GRm (x)A 1 (x) whose Fourier transform is the self-energy integral. 
For  sufficiently negative values o f p  2, one can again deform the integration 

contour  of  (C.7) without  picking up any extra term, and therefore (C.8) is valid 
once more, leading to the representation of  eq. (26). 

To give F ( p  2) finite values for all p2,  we employ a procedure of  analytic contin- 
uation, starting from values o f p  2 outside the hatched region of  fig. 4, were repre- 
sentation (26) holds, and compressing this region, which is not  a natural boundary 
of analytici ty,  into the cut, going through the origin, of fig. 2. 

In this way we enforce representation (26) everywhere and obtain a finite s e l l  
energy for all values o f p  2. 
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